On the Use of Projection Pursuit Constraints for Training Neural Networks
نویسنده
چکیده
\Ve present a novel classifica t.ioll and regression met.hod that combines exploratory projection pursuit. (unsupervised traiuing) with projection pursuit. regression (supervised t.raining), t.o yield a. nev,,' family of cost./complexity penalLy terms . Some improved generalization properties are demonstrat.ed on real \vorld problems.
منابع مشابه
Implementing projection pursuit learning
This paper examines the implementation of projection pursuit regression (PPR) in the context of machine learning and neural networks. We propose a parametric PPR with direct training which achieves improved training speed and accuracy when compared with nonparametric PPR. Analysis and simulations are done for heuristics to choose good initial projection directions. A comparison of a projection ...
متن کاملMultimodality Exploration in Training an Unsupervised Projection Pursuit Neural Network
Graphical inspection of multimodality is demonstrated using unsupervised lateral-inhibition neural networks. Three projection pursuit indices are compared on low dimensional simulated and real-world data: principal components 22], Legendre polynomial 6] and projection pursuit network 16].
متن کاملImage Compression and Signal Classification by Neural Networks and Projection Pursuits
In this report, two applications of neural networks are investigated. The first one is low bit rate image compression by using neural networks and projection pursuit. The second one is improving the classification accuracy of neural network classifiers by using unlabeled data. In the first part, a novel approach for low bit rate image coding is presented. The image is compressed by first quadtr...
متن کاملCombining Exploratory Projection Pursuit and Projection Pursuit Regression with Application to Neural Networks
Parameter estimation becomes difficult in high-dimensional spaces due to the increasing sparseness of the data. Therefore, when a low-dimensional representation is embedded in the data, dimensionality reduction methods become useful. One such method-projection pursuit regression (Friedman and Stuetzle 1981 (PPR)-is capable of performing dimensionality reduction by composition, namely, it constr...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کامل